1,803 research outputs found

    A Bell-type test of energy-time entangled qutrits

    Full text link
    We have performed a Bell-type test for energy-time entangled qutrits. A method of inferring the Bell violation in terms of an associated interference visibility is derived. Using this scheme we obtained a Bell value of 2.784±0.0232.784 \pm 0.023, representing a violation of 34σ34 \sigma above the limit for local variables. The scheme has been developed for use at telecom wavelengths and using proven long distance quantum communication architecture to optimize the utility of this high dimensional entanglement resource.Comment: replaced lost acknowledement

    Finding a state in a haystack

    Get PDF
    We consider the problem to single out a particular state among 2n2^n orthogonal pure states. As it turns out, in general the optimal strategy is not to measure the particles separately, but to consider joint properties of the nn-particle system. The required number of propositions is nn. There exist 2n!2^n! equivalent operational procedures to do so. We enumerate some configurations for three particles, in particular the Greenberger-Horne-Zeilinger (GHZ)- and W-states, which are specific cases of a unitary transformation For the GHZ-case, an explicit physical meaning of the projection operators is discussed.Comment: 11 page

    Cyclic networks of quantum gates

    Get PDF
    In this article initial steps in an analysis of cyclic networks of quantum logic gates is given. Cyclic networks are those in which the qubit lines are loops. Here we have studied one and two qubit systems plus two qubit cyclic systems connected to another qubit on an acyclic line. The analysis includes the group classification of networks and studies of the dynamics of the qubits in the cyclic network and of the perturbation effects of an acyclic qubit acting on a cyclic network. This is followed by a discussion of quantum algorithms and quantum information processing with cyclic networks of quantum gates, and a novel implementation of a cyclic network quantum memory. Quantum sensors via cyclic networks are also discussed.Comment: 14 pages including 11 figures, References adde

    Imperfect Detectors in Linear Optical Quantum Computers

    Full text link
    We discuss the effects of imperfect photon detectors suffering from loss and noise on the reliability of linear optical quantum computers. We show that for a given detector efficiency, there is a maximum achievable success probability, and that increasing the number of ancillary photons and detectors used for one controlled sign flip gate beyond a critical point will decrease the probability that the computer will function correctly. We have also performed simulations of some small logic gates and estimate the efficiency and noise levels required for the linear optical quantum computer to function properly.Comment: 13 pages, 5 figure

    Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R=100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 micron transition during the Epoch of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI
    corecore